Tecnología catalítica para eliminar el SARS-CoV-2 del aire en interiores

Este proyecto del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) estudia utilizar energía solar para producir una reacción química que rompa la envoltura de los virus presentes en el aire y los desactive.

Fuente: CIEMAT


España |
29 de enero de 2021

Científicos del Consejo Superior de Investigaciones Científicas (CSIC) trabajan en el desarrollo de un nuevo sistema fotocatalítico para eliminar el virus SARS-CoV-2, causante de la covid-19, del aire en espacios interiores. El proyecto, liderado por el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y coordinado por la empresa Aire Limpio, prevé incorporar esta tecnología catalítica en los sistemas de climatización y acondicionamiento del aire.

El coronavirus presente en los aerosoles podría tener una vida media de 16 horas. / Pixabay

“La fotocatálisis parte del principio natural de descontaminación de la propia naturaleza. Al igual que, gracias a la luz solar, la fotosíntesis es capaz de eliminar dióxido de carbono (CO2) para generar materia orgánica, la fotocatálisis puede suprimir otros contaminantes habituales en la atmósfera, mediante un proceso de oxidación activado por la energía solar”, según explica Javier Diéguez-Uribeondo, científico y vicedirector de Investigación en el Real Jardín Botánico de Madrid (RJB-CSIC).

Esta reacción fotoquímica convierte la energía solar en energía química en la superficie de un catalizador (material semiconductor), que acelera la velocidad de reacción. Durante el proceso, tienen lugar reacciones tanto de oxidación como de reducción, que provocan de esta forma la eliminación de la mayor parte de los contaminantes, biológicos y químicos, existentes en el aire.

“Esta reacción fotoquímica activada por la luz solar o lámparas y leds específicos UV-A, actúan como fotocatalizadores en la superficie de un semiconductor y generan los radicales hidroxilo, potentes agentes antioxidantes, necesarios para reaccionar con las moléculas orgánicas y producir la rotura de la cápside vírica (la envoltura del virus) y su desactivación final”, detalla Benigno Sánchez, investigador del CIEMAT y líder del proyecto.

“Este hecho ya ha sido demostrado con compuestos químicos o paredes bacterianas. Falta demostrar, como este proyecto propone, que desaparece la capacidad infecciosa al confrontar el fotocatalizador así activado con el virus SARS-CoV-2. Estos ensayos ya se están comenzando a realizar en las instalaciones de los miembros participantes”, añade el investigador.

Eliminar el virus del aire de hospitales y residencias

“El objetivo del proyecto es destruir en minutos el SARS-CoV-2 suspendido en el aire interior, los llamados aerosoles, y cualquier bacteria u hongo, de dependencias sanitarias y residencias. Para ello, incorporaremos en los sistemas de acondicionamiento y distribución de aire ya existentes un sistema fotocatalítico eficiente que permita su tratamiento continuado las 24 horas del día y en presencia de pacientes o personas de riesgo”, continúa Diéguez-Uribeondo.

“El proyecto incide fundamentalmente en la prevención de la infección al evitar la transmisión de los virus infectantes por vía aérea. Hay estudios que señalan que el virus en aerosoles generados en laboratorio tiene una vida media de 16 horas. También hay indicios de la presencia de partículas de SARS-CoV-2 y virus infecciosos en las habitaciones con enfermos de covid-19 de los hospitales”, indica Antonio Alcamí, investigador del CSIC en el Centro de Biología Molecular Severo Ochoa (CBM-CSIC-UAM).

“Queremos poner en el mercado el equipo fotocatalítico como una etapa más en los sistemas de climatización y acondicionamiento del aire”, precisa Sánchez.

“La posibilidad de eliminar el virus del aire interior de espacios cerrados puede permitir un descenso generalizado en el número de contagiados y, necesariamente, de fallecidos. La instalación de este tipo de tecnologías propiciará la reducción de contagiados y enfermos y traerá consigo una menor presión sobre los centros sanitarios y demandas asistenciales”, añade Diéguez-Uribeondo.


Últimas publicaciones

Sevilla | 29 Sep 2022
¿Cómo se detecta el oxígeno de la sangre?

El trabajo desarrollado en el Instituto de Biomedicina de Sevilla demuestra la importancia de la mitocondria en la supervivencia de los seres vivos a situaciones que cursan con falta de oxígeno en sangre. La hipoxia (déficit de oxígeno), además de presentarse en zonas de gran altitud, es un factor crítico vinculado a diversas patologías cardiorrespiratorias de alta morbilidad y mortalidad en humanos. 

Sevilla | 29 Sep 2022
Los efectos de la sequía en la supervivencia del milano real

Un equipo científico de la Estación Biológica de Doñana – CSIC ha examinado el efecto de la sequía en el momento de nacer y la sequía actual sobre las tasas de supervivencia y reproducción, así como sobre el comportamiento, de la población de milano real del Parque Nacional de Doñana. El objetivo ha sido analizar el impacto de los extremos climáticos, no solo los que suceden en la actualidad, sino los experimentados en el pasado en las poblaciones animales.

Córdoba | 29 Sep 2022
Los árboles alrededor de los olivares potencian la presencia de la polilla del olivo

Un estudio de la Unidad de Entomología Agrícola de la Universidad de Córdoba identifica 20 especies de crisópidos en el agroecosistema del olivar. Uno de los agentes de control biológico más destacados de la polilla del olivo ('Prays oleae'). Este trabajo El estudio permite poner en valor tanto el uso de este agente de control en el olivar de forma natural, potenciando las poblaciones que ya existen, como el manejo que realizan los agricultores y las agricultoras de sus cultivos y de esos hábitat que hay alrededor.

buy metformin metformin online