Inteligencia artificial para mejorar las predicciones de riesgo de inundación en las cuencas mediterráneas andaluzas

El sistema desarrollado por la Universidad de Almería y la Universidad de Castilla La Mancha permite actuar con el tiempo suficiente para tomar medidas de protección y mitigación, sobre todo en estas áreas más afectadas por las consecuencias del cambio climático, siendo en Andalucía su zona costera.


Almería |
13 de febrero de 2020

El equipo formado por dos investigadores de la Universidad de Almería, Rafael Rumí (profesor del área de Estadística, doctor en Matemáticas) y Rosa Fernández (contratada post-doctoral, doctora en Ciencias Aplicadas y Medio Ambientales) , junto con la investigadora de la Universidad de Castilla La Mancha, M. Julia Flores (profesora titular en el Departamento de Sistemas Inteligentes), está trabajando en el desarrollo de un modelo que permita mejorar las predicciones de riesgo de inundación en las Cuencas Mediterráneas Andaluzas, basado en la Inteligencia Artificial y el Data Mining.

Pese a ser un modelo sencillo, es capaz de aportar predicciones fiables con unos niveles de error muy bajos.

Cada vez es más necesario poder establecer sistemas de alerta que sean capaces de proporcionar información eficaz sobre estos fenómenos tormentosos, que se han ido incrementando en frecuencia e intensidad por el cambio climático, con el consiguiente riesgo para la población y las infraestructuras. Este cambio ha sido más notable en las comarcas costeras, donde la alta densidad de población y la presencia de infraestructuras de sectores económicos clave conllevan que los daños sean cuantiosos.

El sistema desarrollado por la UAL y la Universidad de Castilla La Mancha permite actuar con el tiempo suficiente para tomar medidas de protección y mitigación, sobre todo en estas áreas más afectadas por las consecuencias del cambio climático, siendo en Andalucía su zona costera.

En un primer trabajo fruto de esta colaboración, se ha modelizado la Cuenca del río Guadalhorce, situada en la provincia de Málaga, obteniendo los datos del Sistema Automático de Información Hidrológica, SAIH Hidrosur. Utilizando un modelo basado en las Redes Orientadas a Objetos, OOBN por sus siglas en inglés (Object Oriented Bayesian Network), con una componente temporal o dinámica, se ha desarrollado un modelo que permite resumir de forma eficiente la información hidrológica de la cuenca. Teniendo en cuenta la información previa del nivel alcanzado en el cauce del río, así como la predicción de lluvia para las siguientes horas, se puede predecir el comportamiento del cauce y, por tanto, evaluar el riesgo de inundación para los distintos tramos de la cuenca.

Los resultados publicados en la Revista Stochastic Environmental Research and Risk Assessment  (revista en el primer decil de Estadística y Probabilidad) muestran que, si bien el modelo desarrollado es sencillo, su robustez es capaz de aportar predicciones fiables con unos niveles de error muy bajos. Además, la naturaleza estocástica del mismo nos permite establecer un nivel de probabilidad determinado para las predicciones llevadas a cabo.

Esta primera aproximación fue el impulso para el proyecto SAICMA (‘Un Sistema de Alerta ante Inundaciones en la Cuenca Mediterránea Andaluza desde la Inteligencia Artificial y el Data Mining’) financiado mediante la convocatoria UAL-FEDER y con el que se pretende dar un paso más estableciendo un meta-modelo jerárquico capaz de evaluar la probabilidad de que ocurra un evento de inundación en las distintas Cuencas Mediterráneas de nuestra comunidad.


Últimas publicaciones

Andalucía | 10 Jul 2020
‘Ciencia al Fresquito’ suma una veintena de actividades de divulgación gratuitas a su agenda de verano

Andújar recibe a partir del lunes la muestra ‘Cristales. Un mundo por descubrir’ de la Fundación Descubre. Los municipios de Morelábor, Pampaneira, Cortes y Graena, Padul, Bédmar y Guadalcanal serán anfitriones en las próximas semanas de talleres, observaciones astronómicas, rutas y exposiciones.

Málaga | 10 Jul 2020
El primer dispositivo inteligente comercial que combate la apnea del sueño y del ronquido

Adaptado a la biomecánica mandibular del paciente, elaborado con materiales biocompatibles y fabricado con impresoras 3D, este aparato diseñado por la empresa malagueña OrthoApnea e ingenieros investigadores de la Universidad de Málaga, está compuesto por una férula superior que cuenta con un elemento saliente denominado seguidor y una inferior con una aleta llamada leva que permite una personalización del avance, de los movimientos laterales y de la apertura mandibular y frontal. El tratamiento se comercializa con cuatro férulas inferiores de distinto avance, para poder intercambiarlas, buscando el avance óptimo y terapéutico.

Almería | 10 Jul 2020
Los artales del poniente almeriense, en ‘peligro de extición’

Estudios científicos realizados por científicos de la Estación Experimental de Zonas Áridas-CSIC, la Universidad de Jaén y del Centro Andaluz para la Evaluación y Seguimiento del Cambio Global (CAESCG) de la Universidad de Almería demuestran que las escasas poblaciones de azufaifo en la zona tienen peculiaridades genéticas que se perderían irremisiblemente. Recientes propuestas de descatalogación de zonas protegidas, así como actividades ilegales ponen en peligro los escasos remanentes de este tipo de hábitat en el poniente almeriense.

Este sitio web utiliza cookies para mejorar tu experiencia. Continuando la navegación aceptas su uso. Más información

Los ajustes de cookies de esta web están configurados para "permitir cookies" y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en "Aceptar" estarás dando tu consentimiento a esto.

Cerrar